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ABSTRACT 

Propagation of fermionic and bosonic strings in 

background weak graviton field is studied, identifying the 

graviton field to the massless closed string excitation 

states. It is shown that for a bosonic string, the presence 

of a background graviton field is equivalent to a shift in 

the background metric at the first quantized level, thus 

producing a bosonic sigma model. For fermionic strings, the 

background graviton field gives rise to a supersymmetric 

sigma model at the first quantized level. Finally, it is 

shown that the presence of a background antisymmetric tensor 

field associated with massless excitations of type II 

closed strings gives rise to a Wess-Zumino term for the 

first quantized bosonic strings, and the supersymmetric 

extension of the Wess-Zumino term for the fermionic strings. 

Similar results for the heterotic string are also discussed. 

i!k nneratad hv I Inlv~rsitics Research bswxiatlon Inc. under contract with the llnited States Oeoartment of Enerav 



2 

String theories' are of interest at present, since they 

may provide a realistic theory of nature2-5. Consistency of 

the theory demands, however, that these theories should be 

defined either in 10 (fermionic strings) or 26 (bosonic 

strings) dimensions. In order to establish connection with 

nature, the ex.tra dimensions must curl up to form a compact 

6-8 space, with radius of the order of the Planck length . So 

far, the only known way to consistently define interacting 

string theories with some of the extra dimensions 

compactified is to consider manifolds in which some of the 

extra dimensions form a multi-dimensional torus. Since a 

torus has zero curvature, the metric can be taken to be 

Minkowskian, the only new ingredient in this theory being 

that the string coordinates are periodic in nature. By 

compactifying the six extra dimensions in ten dimensional 

superstring theories in this manner, we may get various 

extended supersymmetric Yang-Mills and supergravity theories 

in four dimensions in the zero slope limit'. 

In order to make connection with nature, however, we 

need to compactify string theories on more complicated 

manifolds with non-vanishing curvature. TWO different 

approaches'-l4 have been taken so far in COmpaCtifying 

string theories. One is the field theoretic approach, in 

which we study the zero slope limit of the string theory. 

Non-trivial compactification is then obtained by giving a 

background value to the metric 9-l 1 non-zero . In the second 
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quantized string theory, this corresponds to giving a 

non-zero vacuum expectation value to the field, which, 

acting on the vacuum, creates a massless closed string state 

corresponding to a graviton. The second approach to string 

compactification is to study the first quantized string in 

an arbitrary background metric’2-141.t01n this approach, the 

background metric is non-dynamical, and may be treated aS a 

parameter of the theory. 

The purpose of this paper iS to study the connection 

between these two approaches; in particular, to find a 

relation between the background graviton field of the field 

theory limit, and the background metric in the first 

quantized string theory. We shall use the light-cone gauge 

formalism. In this gauge, the action for the bosonic string 

at the first quantized level is given by, 

S = -& J&qL (2, x”a,x”-a,x%xi) (0 

where a’ is the string tension, T, o are the two parameters 

characterizing the string world sheet, and X1(-r, 0) are the 

transverse coordinates of a particular point on the string 

(i=l ,..24). In the rest of the paper, we shall denote T, 0 

by za (e=O,l), and raise and lower the c1 indices with a 

diagonal metric with eigenvalues 1, -1. We shall also set 

the string tension 01’ to be l/Z. 



The spectrum of closed string states described by (1) 

has massless spin 2 excitations. The vertex for the 

emission of such a state from an arbitrary string state is 

given in the light cone gauge by the operator, 

$ fdcr yij (a,-&) X'(&+&)? eiksX(2,6) 
0 

where r-l/Mplanck. cij is the polarization tensor of the 

external graviton and k is its momentum. For simplicity, we 

assume that the external graviton has only transverse 

polarizations. We must also take the k++O limit, since the 

light cone vertex given in (1) is valid only in this limit. 

These, however, are not strong restrictions, since 

ultimately we want to compactify only some of the transverse 

directions, and we want the components of the metric to be 

different from identity only in these directions. 

Let us now assume that there exists a weak graviton 

field hij(x) in the transverse directions, whose Fourier 

transform with respect to the transverse coordinates is 

given by hij(ki). The total transition matrix element from a 

string state I@> to a string state I@> in light cone ’ time’ 

T in this background is then obtained by calculating the 

15 matrix element of the operator , 

e fd’t. fCdcfdD-% ?& (Ix) (++,&(&+a,)~~ 
e 0 

e 
ik.xCr,a) 
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= 6 y jd+&io- (a, yh a, xi- a,x”a,xj) hi; (x(v)) 
0 0 

between these two states. Here we have ignored the 

quadratic and higher powers of the field h. Comparing this 

with Eq.(l) we see that we obtain the same transition matrix 

element to order h, if, instead of (l), we use the first 

quantized string Lagrangian, 

S= -h j-dy f&r 

t; Jd$dc E-- 
0 

Thus the presence of a 

8;; (xl + x~,o(xi (4) 

background graviton field is 

equivalent to shifting the background metric in the first 

quantized string theory. 

Let us now turn to the ten dimensional superstring 

theory. In our analysis, we shall use the old formalism of 

Ramond, Neveu and Schwarz”, instead of using the new 

formalism of Green and Schwarz, since the two dimensional 

supersymmetry is more explicit in the old formalism. In the 

light-cone gauge, the superstring action is given by, 

S=-,* L JdTfL (a, x” a* x”+ ip pqa,xil 
0 

6) 
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where each I1 is a two dimensional Majorana spinor, and p” 

(a=O,l) are the two dimensional Y-matrices. We work in the 

Xajorana representation, 

Q”= (0 -J yp ‘o> (‘4 

15 The graviton emission vertex is given by , 

ik /ao- %j {(a,-&) Xi +* k, A’+ (I+ up, Ai3 
“0 

tk-X<~P-) @) 

where, 

Thus, in a weak graviton field, the transition matrix 

element from one string state to another is obtained by 

calculating the matrix element of the operator, 

iK f&fdo 
7 

c a@ xi3 xi hii W 
a 

- i a, xi 2+ ,: h.ij,, tX)- i a, Yi~~t ‘, hj hij,~ CX) 



where the comma denotes the derivatives of hij(x) with 

respect to the xi’,. The second and the third term in (9) 

may be combined into the form, 

- i a, xi -J,& PA’ hij,a 

where, 

Since h’s are the Majorana spinors, they are real in 

the Maj orana representation. Using this fact and the 

explicit representations for p 0 
and p’, we may show that 

hkpahj is antisymmetric in .E and j. Thus h.. 
1J,9. 

in (10) may 

be replaced by, 

+ Ck;,, 
I 

- ';.!I-, j - hii i) = & CIij R -,Jir,; -&j&,i) 
, 

where gij has been defined in Eq.(4), and rlij is the affine 

connection, with gij as the background metric. Using the 

same antisymmetry property, we may replace hij ,.,,a. in (9) by, 

= -I ~~ejm $ O(~) 
4K 

03) 
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Using explicit representation for p 
0 and p' we may show 

that, 

c= - I\j+ P” (I$ Y, ) $ Am+ e” (r+q) Ai 

Finally, note that we may add to (9) a term proportional to, 

i h,; (X) 2 Pq& Ai (151 

whose effect vanishes to order h, Since paacrXJ vanishes by 

equations of motion. Thus the full effective action at the 

first quantized level is given by, 

S- -2~ ~d~f~daCa,%~a~x’g,j(‘) 
0 

+ i ~ ’ f* b, xj &;j (X ) $ i a,>c” 5;” ~” ’ ‘~; j (~0 

+ $ 'iE,j 
(x) 2 (i+Y,)Y ycl-qp) A"3 

which is precisely the action for a super-symmetric sigma 

model in two dimensions 17-19 with a background metric gij. 

Next we consider the effect of introducing a background 
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antisymmetric tensor field which corresponds to massless 

excitations of type II closed strings. The emission vertex 

for such a field is given by the same expressions as Eq.(2) 

and Eq.(7), except for the fact that the external 

polarization tensor iS antisymmetric instead of symmetric in 

the indices i and j. Thus if bij(x) denotes a background 

antisymmetric tensor gauge field, the action for the first 

quantized bosonic string has an extra piece given by, 

-6 &rfdc 
s 

EWP a, x” 4p xi bij (x) Q7) 
0 

which is precisely the Mess-Zumino term 20 for the bosonic 

sigma model in two dimensions, with. torsion hrtential ” bij . 

In the case of superstring, straightforward algebraic 

manipulation shows that the effective action for the first 

quantized string acquires an extra term besides (l7), 

_ k (AT ST&C r-i. J” 4”( A’ eda dpXk Sijk Cx) Tr 
zz a,’ (~“r, 4”< xj b,j’(‘)) -- 

+ L 

8 
La 

?;q+yp) Ak ~j(ltrpL?l 

where, 

S ii\r = ~ ( b;,,i + b~i j + b,;,,) > 

w 

w 
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~,j ke =-& C bj,,i: - b,,,d, - 'is, ik + b,,,jk) 

This is precisely the supersymmetric extension of the 

Wess-Zumino term. 

Thus we have shown that in the presence of background 

weak graviton field hij(x), and antisymmetric tensor field 

bij(x), the bosonic string theory reduces to a bosonic sigma 

model with a background metric Sij+2Khij(x) and a 

Wess-Zumino term proportional to bij(x), at the first 

quantized level. The superstring theory reduces to a two 

dimensional supersymmetric sigma model with metric 

tTij+2rhij(x), and a supersymmetric extension of the 

Wess-Zumino term proportional to b. The appearance of the 

Wess-Zumino term in the presence of the anti-symmetric 

tensor field is not surprising, since, as WL3S shown in 

Ref.21, a background anti-symmetric tensor field may be 

interpreted as the presence of torsion in the manifold. Oil 

the other hand, the presence of the Wess-Zumino term may 

also be interpreted as the presence of torsion in the 

manifold18. This probably shows that the string theory has a 

much richer geometrical structure than even Einstein 

22 gravity, although we do not see it at present. 

One may try to repeat our analysis with background 

gauge field. In the old way of introducing gauge group in a 



string theory, the gauge bosons are identified with zero 

mass excitations of the open strings, and couples only to 

the ends of the open strings. If we repeat our analysis 

with a background gauge field, we find that the effective 

two dimensional. field theory at the first quantized level 

has new terms onlv at the end points of the strinq, and 

hence the presence of the background gauge field cannot be 

interpreted as a change of the geometry of the internal 

manifold. For the heterotic string, however, the gauge 

charge is distributed on the string, and the presence of a 

background gauge field may be interpreted as the change in 

geometry of the internal manifold. It may be shown that in 

the presence of background graviton and antisymmetric tensor 

field, the string action is given by Eqs.(16), (17) and 

(la), the only new feature being that the Xl's satisfy 

the constraint (1-v,)Xi=O, whereas in the presence of 

background gauge fields AiI (x) associated with the diagonal 

generators of the gauge group, the effective action acquires 

an extra term, 

g py+v C A;, L xi) by-ab) Xi(+WL)X’ -- 
6 

- F Airn (x-9 J%“+f’) X~i(a,+a,)k.f (21) 
2 J 

where X I, s are the internal coordinates (10,<1<25) satisfying 

the constraint (8~-a0)X1=0. The effective action in the 

presence of the off-diagonal gauge fields may be obtained 
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from (1) using the generators of global gauge transformation 

derived in Ref.23. 

I wish to thank S. Das and M. Rubin for useful 

discussions. 



13 

REFERENCES 
1 For recent reviews on string theories, see, 

J. H. Schwarz, Phys. Rep. 69, 223 (1982); 

M. B. Green, Surveys in High Energy Physics 3, 127 (1983); 

L. Brink, CERN report No. CERN-TH-4006/84. 

2 M. B. Green and J. H. Schwarz, Phys. Lett. 149B, 117 

(1984), Caltech report No. Calt-68-1194, Calt-68-1224. 

3 D. J. Gross, J. Harvey, E. Martinet and R. Rohm, Phys. 

Rev. Lett. 54, 502 (1985), Princeton preprint, Jan. 1985. 

4 P. G. 0. Freund, Phys. Lett. 151B, 387 (1985). 

5J. Thierry-Mieg, Berkely preprint. 

6 J. Scherk and J. H. Schwarz, Phys. Lett. 57B, 463 (1975). 

7 E. Cremmer and J. Scherk, Nucl. Phys. B103, 399 (1976). 



14 

8 L. Brink, M. B. Green and $1. H. schwarz, Nucl. Phys. 

B198, 474 (1982). 

9 Solutions of the equations of motion for the fUl1. string 

theory, instead of its zero slope limit has been discussed 

by P. G. 0. Freund, P. Oh and J. T. Wheeler, Nucl.. Phys. 

B246, 371 (1984). 

'OP. Candelas, G. T. Horowitz, A. Strominger and H. Witten, 

Santa Barbara report No. NSF-ITP-84-170 (1984). 

11 P. Frampton, H. van Dam and K. Yamamoto, Univ. of North 

Carolina report No. IFP-242-UNC; 

M. B. Green, J. H. Schwarz and P. C. West, Caltech report 

No. Calt-68-1210. 

P. Frampton, Talk delivered at the Symposium on Anomalies, 

Geometry and ToPol.ogY, held at Argonne Natjonal Lab. and 

Univ. of Chicago, March 28-30, 1985. 

A. N. Schellekens, Talk delivered at the Symposium on 

Anomalies, Geometry and Topology. 



15 

1.2c .,. Lovelace, Phys. Lett. 1358, 75 (1984). 

13 D. Nemeschansky and S. Yankielowicz, Phys. Rev. Lett. 

54, 620 (1985). 

S. Jain, R. Shankar and S. R. Wadia, TIFR report No. 

TIFR-TH/85-3. 

14 D. Friedan, Z. Qiu and S. Shenker, as quoted in Ref. 13. 

15See, for exampl.e, .I. H. Schwarz, Ref. 1. The vertex of 

Eq.(7) is obtained from the graviton emission vertex of the 

new superstring theory, and expressing the oscillators of 

this new theory in terms of the oscillators of the old 

string theory of Ramond, Neveu and Schwarz. 

16P. Ramond, Phys. Rev. D3, 86 (1971); 

A. Neveu and J. H. Schwarz, Nucl. Phys. B31, 86 (1971). 

17D. Z. Freedman and P. Townsend, Nucl. Phys. 8177, 443 

(1981). 



16 

18 T. Curtright and C. Zachos, Phys. Rev. Lett. 53, 1799 

(1984); 

E. Braaten, T. Curtright and C. Zachos, Univ. of Florida 

report No. UFTP-85-01. 

19 R. Rohm, Princeton preprint (1984). 

20 J. Wess and B. Zumino, Phys. Lett. 37B, 95 (1971.1; 

E. Witten, Comm. Math. Phys. 92, 455 (1984). 

21 J. Scherk and J. H. Schwarz, Phys. Lett. 52B, 347 

(1974). 

22 The possibility of producing Wess-Zumino term from 

background antisymmetric tensor field was mentioned in 

Ref.10. 
23 I. B. Frenkel and V. G. Kac, InV. Math. 62, 23 (1980); 

G. Segal, Comm. Math. Phys. 80, 301 (1982); 

P. Goddard and D. Olive, DAMTP preprint (1983). 


